
Computer Science-Project

1

CERTIFICATE

2

ACKNOWLEDGMENT

We would like to thank our school “Birla
Vidya Niketan” and teacher Mrs. Deepika

Pareek who gave us this opportunity to work
on this wonderful project. Thank you for your

guidance.

3

INTRODUCTION

Find and eat the energy balls to gain a score!
You will be spawned in a black screen and you

have to find the energy ball hidden in the
screen, your cursor will start to change colors
once near the energy ball. You can press space

to reveal the location of the energy ball.
(applicable only upto two times per game)

4

INSPIRATION

Our inspiration was drawn when we first heard
about the module pygame and saw how
students of the previous batch had made

amazing and fun games using it. We did not
come up with this idea on the first try, we

slowly progressed from making a snake-like
game to something which looks similar to our

current game.

5

MODULES USED

1) pygame :

pygame is a free and open-source cross-platform library
for the development of multimedia applications like video
games using python, here we have used it as the main
framework for our game.

2) random :

random implements pseudo-random number generations,
here it has been used to generate random coordinates and
colors.

3) mysql.connector :

mysql.connector enables python programs to access
MySQL databases, using an API, here it has been used to
bridge a connection between our game and a local MySQL
database.

4) time :

time provides various time-related functions, here it has
been used to keep a track of time before closing a window.

6

SOURCE CODE

Imports used for making the game

Variables for the game.

While making the game we kept in mind that the person
using this might not be as technologically literate so we
made sure that the person does not have to edit the source
7

code themselves, i.e our game asks for the MySQL
password of the local machine and automatically sees if
the local machine has the correct database/table already
present or not and makes and/or drops the database/table
accordingly. In short the person playing this game does not
have to edit the MySQL connectivity code in the python
file themselves the code handles that. We were able to
achieve this using try and except blocks.

Asking for the root password

Automatic database handling

8

Our main use of connectivity with a MySQL server was to
store the scores of previous game sessions and take the
average of them to predict the expected score.

Taking average score

When using pygame we have to first initialise it by setting
up the window size and the window title followed by a
main game loop.

pygame initialisation

9

The main code of the game lies in the game loop which
has a structure of something like this:

Since the game loop is the most important part of our code
we have decided to break it down into different parts
according to their functioning.

1) Setting up the time delay and the closing window
functionality.

The pygame.time.delay(55) means the frequency for the
game, therefore the 55 here means that the game loop runs
every 55 milliseconds.

pygame.event.get() gets an array of all the events
happening with the game window. Here we check if the
event type is of pygame.QUIT, i.e if the close button of the

10

window is pressed, it then updates the value of run to be
False and thus quitting the game loop in the next iteration.

2) Setting up temporary r,g,b values and the display
strings.

Here we set the tr,tg,tb values for the temporary energy
blob and the display strings which will be shown on the
screen. We also assign the variable keys a list of all the
keypresses made by the user, this will help us to add
functionality into the game according to a specific key.

11

3) Using the keys for detection and movement

We change the X & Y coordinates of the main cursor
according to the velocity and the keys pressed. It must be
noted that while going up the Y coordinate is reduced
instead of being increased, this is because the coordinates
in pygame start from the top left corner.

The color of the hidden blob is changed from balck (0,0,0)
to red (255,0,0) when the spacebar is pressed, also note the
condition ‘if can < 2’ this makes sure that the special
power is not used more than twice per game. It also waits
for a second before revealing the location of the blob.

4) Drawing contents of the main window.

12

Here we fill the window with a black overlay and draw the
cursor and the hidden blob on the screen. We also blit the
current score and the average score on the screen at
appropriate locations, at the end we update the display for
the effects to actually take place.

5) Changing colors and updating the score.

The color of the cursor changes when it is in the vicinity of
the hidden blob. We achieved this by adding some basic
mathematical conditions to the code.

Firstly we check if the (x,y) coordinates are equal to the
(tx,ty) coordinates, we also checked if the (x,y) coordinated
are in the vicinity or not by adding/subtracting from them
to check the nearing area, if (tx,ty) were in that area then
we would produce new values for r, g, b using the random
module. The new colors will take effect upon the next
iteration of the game loop.

Secondly we also checked if the coordinates of the hidden
blob (tx,ty) were in the area of the cursor (x,y), if so then
we would remove the blob and generate new values for
(tx,ty) and increase the score as well, all of this will take
effect in the next iteration of the game loop, i.e 55

13

milliseconds later. We achieved this by adding/subtracting
the radius of the cursor from its x and y coordinates and
checking if tx and ty were in that range or not.

Note
All the random values being generated for (tx,ty) are in the
range of the width and height of the screen, this is done to
prevent the spawning of hidden blobs outside the playable
area.

6) Checking if the player has touched the boundary.

To check if the cursor of the player has touched the
boundaries of the window we added a condition to check if
the (x,y) coordinates of the cursor are equal to or exceed
the width, height respectively, if so then then we set the
value of run to be False and the game stops in the next
iteration but before that the current score is shown on the
screen for 2 seconds.

The pygame.quit() is written after the game loop so that the
game window closes once the game’s over.

14

7) Saving in MySQL database.

After the game finishes the only thing left to do is to save
the current score in the MySQL database to which the
connection was established at the start of the code. This
score will be used in calculating the average the next time.

OUTPUT
When we run the program python asks for our root

password for MySQL.

15

After entering the password a new pygame window pops
up and the pointer is in the center of the screen.

When the spacebar is pressed a red ball shows up for less
than a second indicating the position of the ball.

16

When the cursor is near the ball it starts to change colors
indicating that we are in the vicinity of the ball.

The score represents the number of points the character has
collected so far in which one ball accounts for 10 points,
while the average expected score is calculated by taking

the average of scores made in all the previous games that is
fetched from the SQL server .

17

If the character hits any of the four walls the game ends
and the score is displayed at the centre of the window and
thereafter the window closes.

18

Thank you !
If you wish to download the game file and test it for

yourselves then visit our website at:

https://adityasharma223.github.io/EatEmAll

MADE BY -

1. Aditya Sharma (12-C)
2. Anshuman Kar (12-C)
3. Ritam Raj (12-C)

19

https://adityasharma223.github.io/EatEmAll

